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Abstract

T-cell receptor (TCR) sequencing provides a novel platform 
for insight into and characterization of intricate T-cell profiles, 
advancing the understanding of tumor immune heterogene-
ity. Recently, transarterial chemoembolization (TACE) com-
bined with systemic therapy has become the recommended 
regimen for advanced hepatocellular carcinoma. The regu-
lation of the immune microenvironment after TACE and its 
impact on tumor progression and recurrence has been a fo-
cus of research. By examining and tracking fluctuations in 
the TCR repertoire following combination treatment, novel 
perspectives on the modulation of the tumor microenviron-
ment post-TACE and the underlying mechanisms governing 
tumor progression and recurrence can be gained. Clarifying 
the distinctive metrics and dynamic alterations of the TCR 
repertoire within the context of combination therapy is im-
perative for understanding the mechanisms of anti-tumor 
immunity, assessing efficacy, exploiting novel treatments, 
and further advancing precision oncology in the treatment of 
hepatocellular carcinoma. In this review, we initially summa-
rized the fundamental characteristics of TCR repertoire and 
depicted immune microenvironment remodeling after TACE. 
Ultimately, we illustrated the prospective applications of TCR 
repertoires in TACE combined with systemic therapy.
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Introduction
Hepatocellular carcinoma (HCC) is the most common form of 

liver cancer and the fourth leading cause of cancer-related 
death worldwide.1 Due to the insidious onset of HCC, most 
patients are diagnosed at intermediate or advanced stages, 
missing the opportunity for radical surgical treatment.2 Tran-
sarterial chemoembolization (TACE), as a standard treatment 
regimen, remarkably improves the prognosis of unresectable 
HCC.3 With the development of new therapeutic targets, 
sorafenib is no longer the sole option for advanced HCC.4 
Immune checkpoint inhibitor (ICI) therapy has emerged as a 
promising pillar for various cancer therapies.5 Frustratingly, 
response rates to systemic therapy remain modest, spanning 
from 5% to 40%.6 Importantly, no more than 20% of HCC 
patients benefit from ICI therapy.7

The combination of TACE and systemic treatments is a 
promising option for advanced HCC. Anti-angiogenic drugs 
effectively block the hypoxia-inducible factor 1α (HIF-1α)/ep-
idermal growth factor receptor pathway and inhibit the pro-
liferation and metastasis of residual tumors following TACE.8 
TACE leads to tumor necrosis and the release of tumor an-
tigens, promoting an anti-tumor immune response that fur-
ther synergizes with ICI therapy.9 However, the therapeutic 
effects of combined treatment are elusive, partly due to liver 
function,10 tumor traits,11 diverse regimens,12 and adaptive 
immunity,13 which lead to distinct clinical outcomes. Previous 
studies have revealed that T cells in adaptive immunity are 
crucial and complex in anti-tumor responses, with various T 
cell subsets and their interactions with other immune cells 
significantly impacting therapeutic outcomes.14 As tumor 
progression occurs, T cell numbers, frequencies, and gene 
expression profiles become irreversibly exhausted, resulting 
in heightened immunosuppressive activity. Concurrently, the 
extensive recruitment of regulatory T cells (Tregs) facilitates 
HCC immune escape and diminishes ICI therapy efficacy.15 
Furthermore, embolization-induced ischemia-reperfusion 
injury enhances Th17 cell-mediated recurrence in HCC.16 
Therefore, understanding the heterogeneity and plasticity of 
the intrahepatic T-cell repertoire is critical for developing im-
munotherapies and treatment prediction tools for HCC.

Recent strategies have focused on harnessing adaptive 
immunity by evaluating T-cell receptor (TCR) repertoire to 
improve systemic therapies.17,18 The peripheral blood TCR 
repertoire of HCC patients exhibits distinctive features com-
pared to healthy individuals.19 Immunogenomic classifica-
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tion of HCC reveals that the inflamed class possesses more 
diverse T-cell repertoires and exhibits better responses to 
ICIs.20 De novo TCR clones have been detected in patients 
with postoperative HCC recurrence, suggesting neoantigen-
induced specific T cells.21 Additionally, HCC patients respond-
ing to pembrolizumab show activated TCR signaling and 
major histocompatibility complex (MHC) gene expression, 
indicating heightened T cell cytotoxicity.22 Notably, TCR-
engineered T cell (TCR-T) therapy provides novel treatment 
options for hepatitis B virus (HBV)-HCC recurrence post-liver 
transplantation.23 Here, we initially review the fundamental 
characteristics of TCR repertoire and depict immune micro-
environment remodeling after TACE. Ultimately, we illustrate 
the prospective applications of TCR repertoires in TACE com-
bined with systemic therapy.

Sequencing and characterization of TCR repertoire

Characterization of TCR repertoire
As widely known, immune cells, most notably infiltrating T 
lymphocytes, play a fundamental role in tumor surveillance 
and clearance.24 Indeed, key roles in T cell-mediated immu-
nity include CD4 and CD8 T cells, referred to as antigen-
presenting and cytotoxic cells, respectively. These cells dif-
ferentiate from the initial CD4/CD8 double-positive state in 
the thymus.25,26 They mature into T cells expressing distinct 
functional TCRs that enable them to identify specific antigens 
(Fig. 1).27

TCRs have been extensively studied as molecular mark-
ers for tracking changes in T cells during disease and treat-
ment.28 The functional TCR is a heterodimer, consisting of 
either α and β chains or γ and δ chains. The αβ TCR, found in 
most T cells, recognizes antigens presented on MHC proteins, 
while the γδ TCR, present in approximately 5% of T cells, 

functions independently of MHC and is involved in innate im-
munity.29 The TCR chain comprises a conserved C-terminal 
constant region and an N-terminal variable region capable of 
recognizing antigens (Fig. 2B).30 The TCR repertoire arises 
from somatic recombination of V, D, and J gene segments in 
immature lymphocytes.31 The variable regions critical for an-
tigen recognition are constructed through V(D)J recombina-
tion, a process that combines variable, diversity, and joining 
gene fragments in a random or ordered fashion, including the 
recombination of different gene segment alleles (Fig. 2C).32 
The TCR α and γ chains consist of V and J gene segments, 
whereas the β and δ chains include D gene fragments, en-
hancing structural diversity (Fig. 1).33 The combinatorial di-
versity of gene fragments, along with junctional diversity—
resulting from random nucleotide additions or deletions at 
the junctions of allele segments—endows T cells with exten-
sive antigen specificity, creating approximately 1015 to 1020 
distinct TCR chains.34 Notably, the transition to different TCR 
chains is crucial: β chain recombination promotes the matu-
ration of the αβ TCR, while the γδ TCR benefits from the 
recombination of the γ and δ chains.35

The variable structural domains of the TCR chain contain 
three complementarity-determining regions (CDRs), desig-
nated as CDR1, CDR2, and CDR3, with CDR3 exhibiting the 
greatest variability and determining high TCR chain speci-
ficity.36 CDR1 and CDR2 are encoded by V gene fragments 
and facilitate interaction between the TCR and MHC primarily 
through contact with the conserved α-helices of the MHC. 
CDR3 is encoded by a junction of V and J or D and J gene 
fragments and contains highly differentiated junctions from 
V(D)J recombination, implying higher variability. The anti-
genic specificity of the TCR is mainly determined by CDR3, 
which is responsible for binding peptide antigens in the MHC-
binding groove by encoding the antigen-binding pocket of 
the TCR (Fig. 2B).37 Given its inherent variability and direct 

Fig. 1.  αβ T cell development and maturation. The initial T cells in the thymus differentiate from a DN T cell state to DP T cells. This process involves the recombi-
nation of α and β chains. The α chain is formed through rearrangements of the V and J gene segments, while the β chain is generated through random recombinations 
of the V, D, and J gene segments. The complete variable region is then linked to the constant region to produce functional α and β chains, ultimately assembling into 
the full TCRαβ chain. The DP T cells undergo a selection process to ensure that those with TCRs exhibiting high affinity for self-MHC and pMHC complexes are filtered 
out. The remaining T cells then progress to become SP TCRαβ T cells (by Figdraw). TCR, T-cell Receptor; DN, double-negative; DP, double-positive; self-MHC, self-major 
histocompatibility complex; SP, single-positive; pMHC, self-peptide MHC.
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engagement with antigens, CDR3 provides abundant TCR-
specific characteristics, serving as a predominant target re-
gion in TCR sequencing (TCR-seq). Overall, TCR-seq provides 
the informational basis for studying T cell changes in disease.

TCR repertoire preparation and sequencing
Initial TCR-seq approaches measured CDR3 diversity by cap-
turing TCRs at the nucleotide level through molecular cloning 
and Sanger sequencing.38 Notably, this method only detects 
minor genomic changes, like substitutions and short indels, 
and has low throughput, making it inadequate for captur-
ing the vast diversity of TCRs.27 High-throughput sequencing 
(HTS) platforms have advanced our understanding of T-cell 
repertoires by enabling rapid and comprehensive sequencing 
of genomic DNA or RNA.39 Before HTS, multiplex PCR and 
rapid amplification of cDNA ends (5′ RACE) were commonly 
employed to prepare T-cell repertoires, focusing on amplify-
ing the CDR3 region.29 Multiplex PCR is often used to amplify 
genomic DNA or RNA of the CDR3 region, utilizing primers 
for the J gene segment or TCR constant region along with a 
mix of primers for known V gene segment alleles.29 However, 
multiplex PCR is limited by primer issues and the risk of se-
quencing bias, errors, and uneven allele amplification, lead-
ing to inaccurate TCR diversity and frequency estimates.34 
Strategies have been devised to minimize this bias by using 
multiplex primers to synthesize TCR molecules and introduc-
ing unique molecular identifiers, which help eliminate PCR 
amplification artifacts.40,41 The 5′ RACE method uses RNA 

(reverse transcription) and a single primer pair targeting the 
TCR chain’s constant region and the 5′ mRNA end, enabling 
the amplification of all TCR rearrangements without the bias 
present in multiplex PCR.42 However, 5′ RACE remains prone 
to PCR-related template switching and sequencing errors. 
To track amplification bias, researchers added oligonucleo-
tide sequences and unique barcodes to the 3′ and 5′ ends 
of cDNA.43

Bulk and single-cell sequencing have become mainstream 
methods for analyzing T-cell repertoires. Bulk sequencing 
commonly targets all TCR chain aggregates in a sample to 
analyze large-scale TCR diversity and compare patient co-
hort groups.34 However, bulk sequencing mainly focuses on 
the TCRβ chain, overlooking the role of both chains in deter-
mining antigenic specificity, which results in underestimating 
TCR diversity, confusing intraclonal phenotyping, and failing 
to accurately identify specific T-cell antigens.38 Conversely, 
single-cell sequencing provides information on both paired 
TCR α and β chains, with high read quality and comprehen-
sive coverage of TCR sequences.44 Additionally, single-cell 
sequencing focuses on individual T cells or subpopulations, 
facilitating the identification of rare subpopulations and dif-
ferent TCR cell states.29 Notably, sequencing results depend 
on the quantity and quality of cells in the sample and may 
miss rare clonotypes.29 Despite advances in TCR-seq that 
have enhanced our understanding of T-cell repertoires, im-
provements are still needed in capture efficiency, sensitivity, 
and cost. Furthermore, droplet-based single-cell sequenc-

Fig. 2.  Characterization of TCR repertoires. (A) TCR repertoires at different sets; (B) High-throughput sequencing of TCR repertoires; (C) Basic structure of TCR 
and antigen presentation; (D) Metrics for quantifying TCR repertoires (by Figdraw). TCR, T-cell Receptor.
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ing methods capture about 65% of cells, potentially missing 
specific and rare subpopulations.45 Single-cell sequencing re-
mains more expensive than bulk sequencing, and advanced 
single-cell technologies are pricier than traditional methods, 
limiting some studies.

Metrics for quantifying TCR repertoire
Given the high diversity of TCR sequences, researchers have 
developed multiple algorithms for computational analysis to 
obtain valuable information about T cells and to quantify and 
characterize the TCR repertoire. Commonly used quantitative 
metrics of TCR repertoires include T cell distribution density, 
clonality, and diversity (Fig. 2D). T cell density is determined 
by the total number of T cells within a specific distribution to 

assess the abundance of T cell infiltration, while diversity re-
flects the richness and evenness of the TCR repertoire.46 The 
term “richness” denotes the diversity of V-J rearrangements, 
quantified as the ratio of observed to possible combinations 
of V and J gene segments, indicative of distinct TCR sequenc-
es. “Evenness” reflects the similarity of V-J rearrangement 
frequencies, representing the distribution of unique TCR se-
quences.47,48 Researchers have developed numerous quanti-
tative metrics, including the Hill number, Shannon entropy, 
Rényi entropy, Gini-Simpson index, and Diversity Evenness 
50, to assess TCR diversity (Table 1).28,47,49–56 Clonality inte-
grates density and diversity indicators, evaluating the clonal 
expansion within T cell populations. Key metrics for assess-
ing TCR repertoire clonality include Shannon entropy and the 

Table 1.  Metrics for quantifying T-cell Receptor (TCR) repertoires

Metrics Description Ref

Hill number The Hill number, often referred to as the effective species number, serves as a crucial metric 
for quantifying biodiversity. Within the context of TCR repertoires analysis, Hill numbers can 
be employed to determine the effective number of distinct clonotypes (i.e., sequences that 
exhibit equal abundance), thereby enabling an assessment of the TCR repertoires diversity.

47

Shannon entropy Shannon entropy serves as a metric for assessing diversity, illustrating the variability of 
complementarity-determining regions (CDRs) while considering both richness and relative 
abundance. An increase in this index signifies greater diversity and a more varied distribution.

49

Renyi entropy Renyi entropy serves as a method for assessing biodiversity by analyzing the degree of 
clonal expansion and distribution. It is influenced by the parameter α. When α > 1, there is 
an increased emphasis on more abundant species—such as TCRs that are highly expanded—
whereas an α < 1 prioritizes rarer species. This approach offers richer insights compared to 
using a solitary index, as it accounts for varying weights associated with species abundances.

50

Simpson index The Simpson index serves as a measure of biodiversity. A high Simpson index signifies 
an imbalanced distribution of one or a few clones and a less diverse repertoire.

51

Diversity 
Evenness 50

The Diversity 50 (D50) value is used to assess the diversity of the TCRβ repertoires and is 
defined as the percentage of dominant TCRβ CDR3 clonotypes that account for 50% of the total 
TCRβ sequences accumulated in the sample.

28

Morisita-
Horn index

The Morisita-Horn Index evaluates the similarity of TCR rearrangements. However, it lacks 
sensitivity to TCRs that are of low abundance and is typically employed for assessing TCR 
repertoires with higher abundance.

52

Pielou’s evenness 
index

Pielou’s evenness index allows for comparisons among samples that have different 
total read counts. It ranges from 0 to 1, where a higher score signifies a more uniform 
distribution. Conversely, a low score reflects clone skewing caused by biased expansion.

53

High expanded 
clone (HEC)

HEC is employed to characterize the state of the TCR library. It is determined by summing the 
abundance of all sequences that exceed a specified threshold. Typically, this threshold is set 
at 0.01% or 0.1%, though it can be modified depending on the requirements of the research.

54

Clonality index The clonality index can assess clone expansion, reveal the frequency of such expansion, and 
compare two TCR repertoires with different clone counts. It is derived from the normalized 
Shannon entropy, which ranges from 0 to 1. A higher value signifies greater clone expansion, 
while a value of 1 indicates a monoclonal distribution.

55

Jaccard index The Jaccard index, which is calculated by taking the size of the shared species and dividing 
it by the total size of the two compared samples, is employed to assess the overlap between 
T-cell repertoires, but repertoires homology between healthy tumor-adjacent tissues and tumor 
tissues based only on the Jaccard index is not sufficient to derive any conclusions, and other 
metrics should be used in parallel.

47

Sorensen index The Sorensen index serves to measure the similarity between two T-cell repertoires. It is 
calculated by counting the shared TCR sequences in both repertoires, then multiplying that 
count by two, and dividing this result by the total number of TCR sequences from both 
libraries combined. The Sorensen Index produces a value that varies from 0 to 1, where 0  
signifies no similarity and 1 indicates complete similarity.

47

Morisita overlap 
index

The Morisita overlap index (MOI) serves as a quantitative measure for assessing the similarity 
and overlap of TCR repertoires from two different samples, factoring in both the composition 
and abundance of T-cell rearrangements. MOI ranges from 0 to 1, with 0 denoting no overlap 
and 1 indicating total overlap.

56
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Gini-Simpson index.29 Furthermore, indices such as the Jac-
card index, Morisita overlap index, and Sorensen index are 
utilized to measure TCR repertoire variation and similarity 
across samples or treatment conditions.47 Advanced algo-
rithms have been devised for T cell characterization, empha-
sizing continuous scales of TCR similarity,57 and prioritizing 
the biological relevance of TCR sequences over mere clono-
type counts.58 This enhances the efficiency of large-scale 
TCR-seq analysis and visualization59,60 and allows for the 
rapid identification of T cell subset dynamics in longitudinal 
studies, enabling the tracking and forecasting of immune re-
sponses to diseases and treatments.29 Identifying suitable 
quantitative metrics for analyzing TCR sequences is essential 
for understanding the functional and temporal shifts in T cells 
during disease progression, facilitating disease surveillance 
and therapy assessment.

TCR and antigen databases
To handle the complex sequencing data from thriving TCR 
repertoires, researchers have developed various databases to 
characterize TCR-related information (Table 2). The Immune 
Epitope Database contains experimentally isolated antigens 
from various contexts, including infectious agents, allergens, 
cancer, and autoantigens.61 McPAS-TCR contains sequences 
of human and mouse TCRs and T-cell epitopes, providing TCR 
information for numerous pathologies, including infections 
and cancer.62 VDJdb is a database that links TCR sequences 
with known antigen specificity to their peptide-MHC ligands, 
facilitating in-depth analysis of TCR interactions.63 TCRdb uti-
lizes a 10X Genomics single-cell immunoassay dataset with 
over 270 million TCR sequences from various clinical condi-
tions, tissues, and cell types.63 Despite researchers’ efforts 
in annotating intricate T-cell repertoires, manually curated 
previous databases, which contain limited sequences, have 
become inadequate for high-throughput TCR-seq. New arti-
ficial intelligence pipelines have updated existing databases 
and produced essential tools for analyzing complex TCR rep-
ertoires and immune responses.64

The dual role of TACE in tumor therapy
As the cornerstone of intermediate and advanced HCC treat-
ment, TACE plays a crucial role in tumor downstaging and 
improving prognosis.65 However, debates surrounding the 

potential adverse effects of TACE are contentious, with con-
cerns primarily focused on liver function impairment and the 
risk of tumor metastasis and recurrence. While TACE effec-
tively alleviates tumor load, it may also delay surgery for 
resectable lesions and leave behind more aggressive residual 
tumor cells, particularly in poorly differentiated HCC.66 Post-
operative adjuvant TACE can further compromise residual 
liver function and trigger the activation of the HBV, facilitat-
ing extrahepatic metastases.67 For larger lesions, repeated 
embolization procedures are routinely performed, often re-
sulting in incomplete tumor necrosis, which may reduce the 
adhesion of tumor cells and allow them free access to the 
bloodstream, leading to intrahepatic or extrahepatic me-
tastasis.68 Regarding the tumor microenvironment (TME), 
TACE induces tumor necrosis and severe hypoxia, both of 
which upregulate levels of vascular endothelial growth factor 
(VEGF) and HIF-1α in residual tumors, promoting neovascu-
larization and relapse.69 Importantly, TACE exacerbates the 
hypoxic state and the distribution of oxygen gradients within 
the tumor, fostering tumor plasticity and heterogeneity, and 
reshaping the TME.70

Immune microenvironment restructuring post TACE
TACE has the dual capacity to eradicate tumors and modulate 
anti-tumor immunity through intricate mechanisms. The is-
chemia caused by TACE, combined with the cytotoxic impact 
of chemotherapy, leads to immunogenic cell death (ICD), 
which releases multiple tumor neoantigens.71 These antigens 
are captured by antigen-presenting cells (APCs), which pre-
sent them to T cells via MHC class I molecules, activating 
the effector T cells. Previous studies have demonstrated a 
significant increase in the CD4+/CD8+ ratio and natural killer 
cells, alongside a prominent decrease in regulatory CD4+/
FOXP3+ and immune-exhausted CD8+/PD-1+ T cells post-TA-
CE, potentially transforming the immunosuppressive micro-
environment into an immunosupportive state.71,72 Notably, 
immune checkpoints comprising PD-L1, CTLA-4, indoleamine 
2,3-dehydrogenase 1, lymphocyte activation gene 3, and T-
cell immunoglobulin and mucin domain-containing protein 3 
showed no apparent variation.71 However, TACE also fosters 
an immunosuppressive TME. Studies revealed a reduction 
in the clonality of CD8+ T cells, with numerous shared TCR 
clones detected among CD8+ T cell subsets post-TACE, indi-
cating a substantial degree of homology within these sub-

Table 2.  T-cell Receptor (TCR) and antigen databases

Database Type Source Diseases context Database size

IEDB Antibody sequences; T-cell 
epitope sequences; MHC 
alleles and ligand sequences; 
epitope analysis and prediction

Infectious disease; allergy; 
cancer, autoimmunity; 
transplantation

Human; non-human 
primates; other 
animal species

>6 × 106 
sequences

McPAS-TCR TCR sequences; T-cell 
epitope sequences

Infectious disease; allergy; 
cancer, autoimmunity; 
transplantation

Human and mouse >5 × 103 
sequences

VDJdb TCR sequences with known 
antigen specificity

All Human; mouse; 
non-human primates

61,049 sequences

TCRdb TCRb chain sequences with 
known antigen specificity

Specific tissue, clinical 
condition; cell type

Human >2.77 × 105 
sequences

10X Genomics 
Dataset

Paired TCR sequences with 
known antigen specificity

All Human >1.5 × 104 
sequences

NetTCR-2.0 Paired TCR sequences All Human; non-human 
primates; other 
animal species

∼
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sets.71,73 TACE resulted in a significant increase in TREM2+ 
tumor-associated macrophages (TAMs), which exhibited 
robust inhibition of cytotoxicity in CD8+ T cells.74 Moreover, 
TREM2+ TAMs diminished the secretory release of CXCL9 and 
facilitated galectin-1-induced PD-L1 overexpression in vas-
cular endothelial cells, further suppressing the migration of 
CD8+ T cells.73

Accumulated evidence underscores the pivotal role of 
chemotherapeutic agents in bolstering anti-tumor immunity 
during TACE. These agents increase the immunogenicity of 
malignant cells via cytostatic/cytotoxicity-inducing ICD while 
simultaneously disrupting the immunosuppressive path-
way to enhance effector T-cell responses.75 Clinical chemo-
therapeutics for TACE, including anthracyclines, paclitaxel, 
and oxaliplatin, are considered ICD inducers, increasing the 
abundance of intra-tumoral CD8+ T cells.75,76 Specifically, 
anthracycline doxorubicin, the preeminent chemotherapeu-
tic agent employed in TACE, induces DNA damage in can-
cer cells, activating T-cell immunity.77 Meanwhile, low doses 
of doxorubicin can reduce myeloid-derived suppressor cells 
(MDSCs) and Treg cell infiltration.78,79 Paclitaxel exhibits di-
verse immunomodulatory effects, enhancing APC phagocy-
tosis, decreasing Treg populations and activity, increasing 
pro-inflammatory cytokine levels, and boosting dendritic cell-
mediated antigen presentation.80 Paclitaxel can also induce 
the polarization of M2-like TAMs towards M1-like TAMs.81 No-
tably, cisplatin fails to induce ICD but regulates the immune 
system by releasing tumor antigens and danger-associated 
molecular patterns in the TME, including the upregulation of 
MHC-I expression, recruitment and proliferation of effector T 
cells, and reduction of immunosuppressive factors.82,83

Inflammatory responses triggered by TACE not only ac-
tivate anti-tumor immune responses but also have the po-
tential to trigger various pro-tumorigenic effects, including 
fostering tumor cell proliferation, initiating the metastatic 
cascade, promoting angiogenesis, and suppressing adaptive 
immunity.84 Previous studies confirmed that elevated CRP 
levels are linked to reduced CD4+ T lymphocyte infiltration.85 
Moreover, IL-6 promotes tumor immune evasion by upregu-
lating the expression of PD-L1.86 Overall, the inflammatory 
response triggered post-TACE facilitates the elimination of 
tumor necrotic foci and enhances the anti-tumor immune 
response. However, the persistent inflammatory response 
resulting from incomplete TACE accelerates the development 
of an immunosuppressive TME.

Hypoxia after embolization triggers tumor neovasculari-
zation, leading to disorganized blood vessels that block T-
cell entry into the TME.87 Moreover, the imbalance between 
pro- and anti-angiogenic signaling affects blood perfusion in 
dysfunctional blood vessels. Impaired perfusion, along with 
subsequent hypoxia and an acidic TME, promotes tumor re-
currence, invasion, and metastatic potential by hindering T-
cell activity.87 Notably, VEGF signaling during TACE affects 
the tumor immune microenvironment (TIME) by inhibiting 
T cell function, increasing the recruitment of Tregs, MDSCs, 
and mast cells, and impeding dendritic cell activation.88 Tar-
geting VEGF signaling can improve ICI treatment efficacy by 
normalizing the tumor’s blood vessels and allowing T cells to 
penetrate the tumor barrier.89 Moreover, studies have eluci-
dated that VEGF plays a pivotal role in regulating checkpoint 
molecule expression, supporting the rationale for combined 
ICI therapy.90

The temporal and spatial variability in the TME after TACE 
is governed by intricate regulatory mechanisms. Initially, af-
ter TACE, tumor cell death releases neoantigens and inflam-
matory cytokines due to ischemic effects and chemotherapy 
toxicity. This process initially boosts anti-tumor immunity 

but later transitions to an immunosuppressive state due to a 
hypoxic and acidic microenvironment. Moreover, the imbal-
ance between pro- and anti-angiogenic signaling, along with 
physical compression, causes abnormal tumor blood vessels 
and reduced blood perfusion. The level of impairment varies 
based on the tumor’s stage and location, exhibiting differenc-
es between regions and primary versus metastatic tumors. 
Overall, the TIME undergoes intricate remodeling after TACE, 
supporting the heterogeneity of HCC and paving the way for 
targeted treatments and immunotherapy.

TACE in combination with systemic therapy
Systemic therapies, including tyrosine kinase inhibitors 
(TKIs)-based targeted therapies and ICI therapies, have 
reshaped the formulation of therapeutic schemes for HCC. 
However, only subsets of patients have yielded considerable 
benefits from ICI and TKI monotherapy.91 Multiple studies 
have confirmed that combining ICIs with TKIs improves the 
prognosis for HCC patients, highlighting the necessity of 
combination therapy.92,93 Arterialization is a key hallmark of 
HCC, and the combination of ICIs and TKIs could potentially 
improve the TME by normalizing tumor vessels.94

Given the intricate nature of anti-tumor immunity, inte-
grating immunotherapy with multiple treatment strategies is 
essential for effectively eradicating tumors. Merely enhanc-
ing the immune response and inhibiting immunosuppressive 
cells is inadequate, especially in tumors with high tumor mu-
tational burden and actively suppressive immune microen-
vironments.25 In this context, the combination of TACE and 
systemic therapy presents a more effective treatment strate-
gy. TACE induces tumor necrosis and releases tumor-specific 
antigens (TAAs), thereby activating tumor-specific immune 
responses. Concurrently, ICIs block inhibitory checkpoints to 
maintain T-cell effector function. Furthermore, embolization-
induced hypoxia elevates the expression of VEGF and PD-L1, 
indicating potential benefits in combining targeted agents 
with ICIs.9 A triple combination of TACE, targeted therapy, 
and ICI therapy is becoming the primary treatment for ad-
vanced HCC. Clinical studies have demonstrated the safety 
and effectiveness of this strategy, with additional trials un-
derway (Table 3).

As previously stated, numerous tumor antigens are re-
leased, which boosts the recruitment of tumor-infiltrating 
lymphocytes (TILs) and APCs, transforming the TME from 
“cold” to “hot” and improving the response to immuno-
therapy. Furthermore, the early establishment of a hypoxic 
TME enhances drug delivery and elevates the efficacy of sys-
temic therapy.95 Nevertheless, hypoxia following emboliza-
tion is a key factor contributing to resistance to systemic 
therapy. Hypoxia upregulates PD-L1 expression in MDSCS, 
dendritic cells, and cancer cells, thereby facilitating immune 
evasion. Simultaneously, hypoxia impedes the activation of 
T and natural killer cells while augmenting the percentage 
of Tregs, thereby promoting an immunosuppressive TME.96 
Moreover, hypoxia facilitates the differentiation of M2-TAMs, 
diminishing the cytotoxic activity of CD8+ T cells.73 Addition-
ally, hypoxia enhances the expression of VEGF and facilitates 
the glycolysis of tumor cells, favoring adaptation to hypoxic 
stress, which ultimately undermines the efficacy of anti-an-
giogenic treatments.97 Therefore, the therapeutic outcome of 
combination treatment will depend on the balance between 
the positive and negative effects of hypoxia on the TME in a 
given clinical context.

Recently, researchers have proposed the “Immune Boost 
TACE” strategy, where the approach shifts from complete 
embolization to partial embolization techniques aimed at 
“activating the cancer immune cycle” to amplify the efficacy 
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of immuno-oncology-based systemic therapies.98 In a proof-
of-concept study for individuals with TACE-unsuitable up-to-
seven-out tumors, TACE was administered to partially treat 
tumors, with atezolizumab and bevacizumab as the primary 
treatment, resulting in a clinical or pathological complete re-
sponse in 35% of the patients.99 Collectively, it is crucial to 
mitigate the impact of hypoxia following embolization on the 
immunosuppressive TME and establish sustainable effects 
in stimulating the cancer immune cycle, thereby enhancing 
the efficacy of systemic therapy. During this time, substan-
tial quantities of tumor antigens activate the cancer immune 

response, while reduced hypoxia permits remaining tumor 
cells to remain functionally quiescent and avoid proliferation.

Rationale for TCR repertoire in combination therapy
With tumor necrosis following TACE, a mass of neoantigens is 
released, triggering the recognition and expansion of T cells 
with specific tumor neoantigen TCRs, thereby increasing the 
diversity and clonality of the TCR repertoire.71 Subsequently, 
the ischemic and hypoxic microenvironment after emboliza-
tion drives tumor immunosuppression and immune escape. 
The immunoediting hypothesis posits that pro-inflammatory 

Table 3.  Ongoing clinical trials for triple therapy

Study 
design Experimental arm Control arm Disease stage Primary 

endpoint
Clinical trials 
government 
registration

Phase 3 TACE+Sintilimab+Bevacizumab Lenvatinib+ 
TACE

Advanced 
unresectable HCC

OS NCT05985798

Phase 2 TACE+Fruquintinib+Sintilimab None Unresectable HCC PFS NCT05971199

Phase 1/
Phase 2

TACE+Lenvatinib+Tislelizumab Lenvatinib Plus 
Tislelizumab

Unresectable HCC ORR NCT05842317

Phase 3 TACE+Camrelizumab+ 
Lenvatinib

None Advanced HCC Conversional 
resection rate

NCT05738616

Observational TACE+Lenvatinib+Anti-PD-1 None Unresectable HCC Conversion 
resection number

NCT05717738

Phase 3 TACE+Lenvatinib+Sintilimab Lenvatinib+ 
TACE

BCLC C OS NCT05608200

Phase 2 TACE+Donafenib+Sintilimab None Unresectable HCC ORR NCT05507632

Phase 2/
Phase 3

TACE+Penpulimab+Anlotinib Penpulimab+ 
Anlotinib

Advanced HCC PFS NCT05344924

Observational TACE+PD-1/PD-L1 
inhibitors+VEGF-TKI/
bevacizumab

None Advanced HCC OS NCT05332821

Observational TACE+PD-1/PD-L1 
inhibitors+VEGF-TKI/
bevacizumab

None Intermediate HCC PFS NCT05332496

Phase 3 TACE+Camrelizumab+Apatinib 
mesylate

None Incurable HCC PFS NCT05320692

Phase 3 TAC+Atezolizumab+ 
Bevacizumab

None BCLC B Grade 3 or higher 
treatment-related 
adverse events

NCT05320692

Phase 2 TACE+AK104+Lenvatinib None Unresectable, 
non-metastatic 
hepatocellular 
carcinoma

PFS NCT05319431

Phase 2 TACE+Donafenib+Anti-PD-1 None Advanced HCC PFS NCT05262959

Phase 2 TACE+Tilelizumab+Sorafenib None BCLC C 1-year survival 
rate

NCT04992143

Early Phase 1 TACE+Anti-PD-1+Lenvatinib None BCLC B/C Resection rate NCT04974281

Phase 2 TACE+Sintilimab+Bevacizumab 
Biosimilar

None Advanced HCC ORR NCT04954794

Phase 3 TACE+Atezolizumab+ 
Bevacizumab

None Intermediate HCC Time to failure 
of treatment 
strategy

NCT04803994

Phase 3 TACE+Atezolizumab+ 
Bevacizumab

None Incurable HCC PFS/OS CTR20202073

TACE, transarterial chemoembolization; HCC, Hepatocellular Carcinoma; BCLC, Barcelona Clinic Liver Cancer; OS, Overall Survival; PFS, Progression-Free Survival; 
ORR, Objective Response Rate.
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responses exert selective pressures that force tumors to 
“evolve” to avoid detection, which includes downregulation of 
antigenic protein expression and reduced antigen-presenting 
potential.100 Tumors may become dormant after TACE but 
later reactivate with mutations that render them less visible 
to the immune system. T cells evolve alongside these tumor 
mutations, leading to specific TCR repertoires. Prolonged ex-
posure to neoantigens can cause cytotoxic T lymphocytes 
to become exhausted, resulting in decreased function and 
continued expression of inhibitory receptors.101 Furthermore, 
tumor cells activate tolerance mechanisms by expressing 
self-antigens, depleting antigen-specific T cells.102 They also 
downregulate MHC-I expression, which hinders antigen-pre-
senting cell activation and leads to suboptimal activation of 
tumor-specific T cells.

Variations in T cell populations within the TME and pe-
ripheral blood are pivotal for anti-tumor immunity. Studies 
show that recruiting extra-tumor T cells is critical for ICI re-
sponse.103 In mice, T cell proliferation and activation were 
prevalent in tumor-draining lymph nodes and peripheral 
blood after PD-1 blockade.104 Compared to the TME, there 
was an amplification of peripheral tumor-reactive TCR rep-
ertoires in melanoma patients treated with ICIs.105 Yost et 
al. proposed a model suggesting a connection between the 
tumor-exogenous T-cell response to PD-1 blockade and the 
cancer-immune cycle, arguing that the reactivation of tumor-
exogenous T cells and preexisting TILs work synergistically 
to enhance anti-tumor immune clearance during ICI treat-
ment.103 Previous research revealed that multiple preexisting 
intra-tumor T cells in patients receiving ICIs failed to exhibit 
clonal expansion, and preexisting depleted T cell clones re-
mained without reverting to a non-depleted phenotype.106 
T-cell clones that experience expansion within the tumor 
are shared with both adjacent normal tissue and peripheral 
blood; however, peripheral blood lacks exhausted TIL clones, 
indicating that peripheral T cells may serve as a complemen-
tary source of non-exhausted TILs.107

Altogether, the release of neoantigens due to tumor necro-
sis and the immune evasion mechanisms alter T cell profiles 
after triple therapy. Monitoring the TME and peripheral blood 
TCR repertoire is crucial for assessing the response to and 
prognosis of combination therapy.

Application of TCR repertoire in the treatment of HCC

TCR repertoire facilitates the development of diag-
nostic biomarkers and therapeutic strategies
As tumors advance, T cells co-evolute with neoantigens, 
leading to distinct TCR repertoires. Identifying diverse CDR3 
profiles and TCR clonal expansion through TCR-seq is impor-
tant for predicting HCC progression and treatment outcomes. 
The TCR repertoire differs between adjacent and tumor tis-
sues in HCC patients, with diminishing diversity as the dis-
ease progresses.108 Li et al.109 observed an increase in the 
clonality of TCRs in tumor tissue and peripheral blood as the 
cancer stage progresses. Chen et al.110 found higher levels 
of certain TCR genes in tumor tissues of patients with HBV-
associated HCC compared to adjacent normal tissues. Recent 
studies indicate that while TRBV CDR3 diversity is similar in 
tumors and normal tissues, TRBV16 and TRBV7-6, along with 
various TRBVx/BJx combinations, are more common in tu-
mors.111 Another study reported higher usage of eight specif-
ic Vβ-Jβ pairs in HCC tumor tissue.19 Additionally, peripheral 
TCRβ-V-J pairing in HCC shows promise as a non-invasive 
diagnostic biomarker.112 Overall, TCR V-D-J rearrangements 
and specific CDR3 sequences may help differentiate tumors 

with invasive or metastatic potential. More research is re-
quired to understand how clonality and CDR3 sequence di-
versity influence tumor initiation and progression.

Identifying and defining the immune response to TAAs 
is a prerequisite for developing cell-based immunotherapy. 
Introducing genes encoding tumor-specific TCRs to direct 
patient-derived T cells to target antigens is crucial for tu-
mor immunotherapy.113 Huang and colleagues114 identified 
TCRVβ 7.11_h3f7 as a potential specific target gene for HCC 
by analyzing TCR Vβ subfamily cloning and sequencing. Fur-
thermore, they demonstrated that peripheral blood mono-
nuclear cells (PBMCs) transfected with the TCRVβ7.1_H3F7 
gene displayed targeted killing of HCC cells. The adoptive 
transfer of PBMCs exhibited significant inhibition of HCC 
progression in animal models.114 Transferring TCR gene se-
quences into T cells to create TCR-T cells that can specifically 
target tumor cells is a promising strategy.115 High-affinity 
TCRs were isolated from TILs or TSA/TAA peptide-induced 
healthy donor T cells. These T cells were expanded, and their 
TCR α and β chains were cloned into target T cells for spe-
cific tumor antigen recognition (Fig. 3).116 HBsAg-specific 
affinity-improved TCR-T cells showed increased sensitivity 
and cytotoxicity against HCC.117 Engineered mucosa-associ-
ated invariant T cells with HBV-specific TCRs effectively tar-
get and destroy HBV-infected hepatocytes.118 Furthermore, 
TCR-T cells targeting HLA-A2/α-fetuin amino acids 158-166 
exhibited promising anti-tumor efficacy.119 Table 4 summa-
rizes information on clinical trials of TCR-T therapy in HCC. 
Altogether, the identification of high-affinity TCR repertoires 
presents a promising novel avenue for immunotherapy and 
precision medicine in the treatment of HCC.

TCR repertoire serves as a promising platform to 
predict the prognosis of HCC
The characterization of the HCC TME and peripheral T-cell 
repertoires through TCR-seq offers potential biomarkers for 
prognostic prediction. Lin et al.19 found a positive correlation 
between the extent of overlap in TCR repertoires between 
tumor tissue and adjacent tissue and the prognosis of HCC. 
Theoretically, the evolution of TCR repertoires is closely asso-
ciated with the development of mutant neoantigens, and an 
increased overlap in TCR repertoires between paired tissues 
indicates a reduced burden of tumor mutations and a bet-
ter prognosis. Additionally, non-tumor-specific TCRs mixed 
with numerous tumor neoantigen-specific TCRs increase the 
diversity of T cells, partly explaining the association between 
TCR diversity and limited prognosis.120 Compared to non-re-
current patients, recurrent HCC patients showed higher TCR 
richness in non-tumor tissues and inferior evenness in tumor 
tissues.108 Another study found that non-relapsed patients 
possessed more shared TCR clonotypes in both tumor tissue 
and PBMC, and the higher frequencies of the top 100 CDR3 
sequences were correlated with favorable prognosis.109 Song 
et al.121 found a correlation between the high chemical com-
plementarity of TRB CDR3 amino acid sequences in HCC and 
HBV epitopes with improved prognosis. Additionally, a study 
demonstrated the predictive value of TCR Vβ-Jβ sequences in 
the prognosis of NSCLC patients receiving adjuvant therapy, 
further supporting a prognostic model constructed based 
on specific V-J combinations.122 Collectively, TCR repertoire 
represents a promising tool for predicting survival in HCC 
patients.

TCR repertoire can predict responses to therapy
Prior studies have demonstrated that the efficacy of TACE 
is at least partially related to treatment-induced innate im-
munity and adaptive immune regulation.2,9 As previously 
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mentioned, TACE-induced ICD, pro-inflammatory cytokine 
secretion, and enhanced inflammatory pathways stimu-
late adaptive immune responses, with spontaneous TACE-
induced T-cell responses indicating a favorable prognosis. 
Thus, characterizing the T-cell repertoires may provide valu-
able insights into the response to TACE. Prior studies have 
shown alterations in the clonability of TILs post-TACE, but 
a definitive correlation between TACE and T cell clonability 
in tumor infiltration remains unproven.71 Single-cell analy-
sis revealed that, post-TACE, tumor-infiltrating CD8+ T cells 
segregated into distinct clusters, with tumor-specific TCRs 
mainly found in progenitor-exhausted and terminal-exhaust-
ed CD8+ T cell populations. Additionally, numerous shared 
clonotypes were identified among CD8+ T cell subclusters 
transitioning toward exhaustion phenotypes. Nevertheless, a 
distinct decrease in shared clonotypes was observed in CD8+ 
T cell subclusters differentiated toward exhaustion pheno-
types within the TACE group compared to the primary tumor 
group, indicating that TACE may impede CD8+ T cell clone 
expansion.73 Consequently, TCR repertoires prove valuable 
in elucidating the mechanisms of immunomodulation and 
anti-tumor immunity following TACE, as well as in forecast-
ing therapeutic outcomes.

The combination of ICI therapy and TACE has been shown 
to effectively rejuvenate the function of exhausted TILs and 
enhance anti-tumor immunity.123 The pre-treatment interac-
tion between TCR repertoires and tumor-specific antigens in 
lymphoid organs promotes the proliferation of tumor-specific 
T cells, suggesting that the host’s existing immune state in-
fluences treatment outcomes. Nevertheless, inhibitory re-
ceptor upregulation diminishes the anti-tumor cytotoxicity of 
preexisting tumor-specific T cells, and inhibiting these recep-
tors effectively decreases the activation threshold for T cells 
stimulated by TCR signaling. After the administration of ICIs, 
T cells with low-affinity TCRs expand, enhancing T cell clone 
diversity.124 Moreover, T cells exhibit a propensity to selec-
tively enhance high-affinity TCR-ligand interactions during T 
cell responses, while ICIs typically hinder the expansion of 
cells with strong TCR affinity and promote the diversifica-
tion of antigen-specific T cell populations. Conversely, inhibi-
tory checkpoint blockade encourages the proliferation of TCR 
clones with high affinity for tumor-specific antigens, ulti-
mately diminishing the diversity of TILs.125 Patients with pol-
yclonal TCR repertoires in baseline PBMCs are more likely to 
benefit from ICI therapy.48 A study found that the clonality of 
total circulating TCR enhances the responses to anti-CTLA-4 

Fig. 3.  Summary of TCR-T cell construction for clinical application. TAA, tumor-associated antigens; TSA, tumor-specific antigens; TILs, tumor-infiltrating lym-
phocytes; TCR, T-cell Receptor.



Journal of Clinical and Translational Hepatology 2025 vol. 13(1)  |  69–8378

Li J. et al: TCR repertoire in combination therapy for HCC

immunotherapy.126 Maintaining diverse T-cell repertoires 
during immune responses allows for greater cross-reactivity 
to similar antigenic epitopes while avoiding escape by simply 
mutating a single antigen. Additionally, maintaining T cells 
expressing low-affinity TCRs may be critical for the produc-
tion of specific cytokines required for tumor clearance.125 
Notably, the iterative application of ICIs leads to continuous 
modification of TCR repertoires, characterized by alterations 
in clonality, which may serve as a predictive tool for evalu-
ating the efficacy of ICI therapy. Overall, the fluctuating T-
cell repertoire during treatment offers valuable insights into 

monitoring and the mechanisms of anti-tumor immunity.
Although TCR repertoires hold promise for HCC appli-

cations such as biomarkers, prognostic markers, TCR-T 
therapies, immune microenvironment dynamics, and im-
munotherapy response evaluation, clinical management 
challenges remain. Previous studies showed that TILs derive 
from peripheral T cells, and liquid biopsies could help address 
tumor deficiencies and partially explain tumor heterogene-
ity and plasticity.127 Although affordable liquid biopsy tubes 
allow for more frequent immunosurveillance in clinical prac-
tice, the sensitivity and accuracy of current assays remain 

Table 4.  Primary clinical trials of T-cell Receptor (TCR)-T cell therapy in patients with hepatocellular carcinoma (HCC)

Clinical trials Diseases Phase NCT number
Country/gov-
ernment reg-
istration

Primary endpoint

Redirected HBV-Specific 
T Cells in Patients With 
HBV-related HCC (SAFE-
T-HBV) (SAFE-T-HBV)

Hepatocellular 
carcinoma

Phase 1 NCT04745403 Singapore 
General Hospital, 
Singapore

Safety evaluation of 
mRNA HBV/TCR T-cell 
treatment; Analysis of 
modifications of tumor 
microenvironment 
caused by mRNA HBV/
TCR T-cell treatment

T Cell Receptor-Redirected 
T Cells Infusions in Subjects 
With Recurrent HBV-Related 
Hepatocellular Carcinoma in 
Post Liver Transplantation

Recurrent 
hepatocellular 
carcinoma

Phase 1 NCT02719782 The Third Affiliated 
Hospital of Sun 
Yat-sen University, 
Guangzhou, 
Guangdong, China

Safety of the 
TCR-T treatment

T Cell Receptor-Redirected 
T Cells With Recurrent HBV 
Treatment in Patients-Related 
Hepatocellular Carcinoma in 
Post Liver Transplantation

Recurrent 
hepatocellular 
carcinoma

Phase 1 NCT04677088 The First Affiliated 
Hospital of Sun 
Yat-sen University, 
Guangzhou, 
Guangdong, China

Safety evaluation of 
the TCR-T treatment

T Cell Receptor-Redirected T 
Cell Infusion For Prevention 
of Hepatocellular Carcinoma 
Recurrence in Subjects With 
Hepatitis B Virus-Related 
Hepatocellular Carcinoma 
Post Liver Transplantation

Hepatocellular 
carcinoma

Phase 1 NCT02686372 The First Affiliated 
Hospital of Sun 
Yat-sen University, 
Guangzhou, 
Guangdong, China

To evaluate the 
safety of the 
TCR-T treatment

EGFRvIII/DR5/NY-ESO-1/
Mesothelin CAR-T/TCR-T 
Cells Immunotherapy 
for Solid Malignancies

Advanced - 
unresectable, 
relapse/refractory 
- recurrent 
hepatocellular 
carcinoma

Phase 1/
Phase 2

NCT03941626 Henan Provincial 
People’s Hospital, 
Zhengzhou, 
Henan, China

Number of 
Participants With 
Adverse Events 
evaluated with NCI 
CTC AE, version 4.0 
(Safety evaluation)

AFP Specific T Cell 
Receptor Transduced 
T Cells Injection(C-
TCR055) in Unresectable 
Hepatocellular Carcinoma

Hepatocellular 
carcinoma

Phase 1 NCT03971747 Fudan University 
Affiliated 
Zhongshan 
Hospital, 
Shanghai, China

Incidence of 
treatment-related 
adverse events 
as assessed by 
CTCAE v4.0

Personalized New Antigen 
Reactive Immune Cells (NRT) 
Combined With Radiotherapy 
for Advanced Hepatocellular 
Carcinoma Patients

Hepatocellular 
carcinoma

Phase 1/
Phase 2

NCT03199807 The Affiliated 
Nanjing Drum 
Tower Hospital of 
Nanjing University 
Medical School, 
Nanjing, China

Number of 
participants with 
Adverse Events

TCR-Redirected T Cells 
Therapy in Patients with 
HBV Related HCC

Hepatocellular 
carcinoma

Phase 1 NCT03899415 Beijing 302 
Hospital, 
Beijing, China

Safety evaluation 
based on Incidences 
of adverse events/
serious adverse 
events

HBV, Hepatitis B Virus; SAFE-T-HBV, Safety and Tolerability Study of Redirected HBV-Specific T Cells in Patients with Hepatitis B Virus (HBV)-Related Hepatocellular 
Carcinoma; NCT, National Cancer Institute; CTACE, Common Terminology Criteria for Adverse Events; CTC, Common Terminology Criteria; AE, Adverse Events.
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inadequate. Additionally, the correlation between peripheral 
biomarkers and intratumoral/intertumoral immune hetero-
geneity remains largely unclear.128 However, TILs directly 
interact with tumors, making their TCR repertoire more in-
dicative of responses to tumor-specific antigens. Therefore, 
combining peripheral blood and tumor tissue TCR-seq could 
enhance the prediction and treatment of tumor-specific 
TCRs. A study indicated that identifying overlapping top TCR 
clones between TILs and peripheral blood improved the pre-
diction of response to cetuximab therapy.18 Proverbially, tu-
mors reveal a high degree of genetic heterogeneity. Even 
different regions of the same tumor exhibit varying genetic 
mutational heterogeneity, resulting in distinct neoantigen 
repertoires, which ultimately generate TCR repertoires of 
varying abundance and diversity.129 Thus, to achieve com-
plete TCR repertoires, multifocal and vascular cancer foci 
should be sequenced separately, enabling the identification 
of tissue-specific biomarkers. The model of tumor-exogenous 
T-cell response to PD-1 blockade highlights the importance 
of exogenous T-cells as reservoirs of TILs after tumor necro-
sis, synergizing with pre-existing TILs to enhance anti-tumor 
immunity.103 Continuous monitoring of the peripheral T-cell 
repertoires is a better method than biopsies for evaluating 
treatment efficacy and disease progression after combination 
therapy. In clinical practice, TCR repertoires should be ana-
lyzed alongside biomarkers like PD-L1 expression and tumor 
mutational burden to improve immunotherapy prognostic 
markers.130 Altogether, TCR repertoires demonstrate prom-

ise in predicting and monitoring therapeutic responses and 
guiding individualized therapy for patients with HCC (Fig. 4).

Future directions
TCR-seq and repertoire analysis offer novel insights into 
forecasting immunomodulatory mechanisms and therapeutic 
outcomes of TACE-based triple therapies within the frame-
work of HCC, as well as the formulation of innovative treat-
ment strategies. Clinical and preclinical studies have yielded 
promising results, and early clinical trials are currently under-
way. Nevertheless, as we move toward clinical application, it 
is essential to acknowledge and address potential challenges.

Despite advancements in TCR-seq prompting T-cell re-
search, improving efficiency, sensitivity, and cost-effec-
tiveness—especially in single-cell sequencing—remains im-
perative. Due to cost constraints, routine TCR-seq is mainly 
performed using bulk methods. Notably, the utilization of 
microfluidics holds great potential for enhancing the efficien-
cy and cost-effectiveness of single-cell TCR-seq.131 Beyond 
technical challenges, there is a growing interest in integrat-
ing spatial transcriptomic two-dimensional information for 
profiling TCR repertoires, thus achieving in situ resolution of 
T-cell specificities and phenotypes.132 Additionally, the utili-
zation of lineage tracing alongside TCR analysis to elucidate 
T cell developmental trajectories and phenotypic plasticity 
holds great potential for dissecting the varied responses to 
HCC treatment and the mechanisms involved in remodeling 

Fig. 4.  Application of TCR repertoires in the treatment of HCC. TACE, transarterial chemoembolization; TCR, T-cell Receptor; HCC, hepatocellular carcinoma.
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the immune microenvironment with enhanced resolution.133 
However, immense costs limit the clinical application of these 
strategies. Furthermore, identifying antigen-specific TCRs 
faces multiple challenges: first, the frequency of antigen-
specific T cells is extremely low134; second, the polymor-
phism of MHC, multispecificity of TCRs, and multiple potential 
epitopes arising from a single antigen increase the difficulty 
of resolving the antigen specificity of TCRs135; finally, the 
weak affinity of TCRs to MHCs hampers the selective isola-
tion of antigen-specific T cell populations.135 On the other 
hand, considering various tumor antigens and the complex 
TCR-antigen recognition process, the effectiveness of TCRs 
in monitoring specific sequences is restricted.136 Therefore, 
future work to address these challenges is imperative for ad-
vancing TCR-seq in HCC therapy.

Dissecting the heterogeneity of HCC is essential for com-
prehending and forecasting tumor progression, evaluating 
treatment responses, and formulating new therapeutic strat-
egies. As an inherent characteristic of tumors, the develop-
ment of heterogeneity involves variations in the activity of 
multiple oncogenes and signaling pathways. The multitude 
of mutations and molecular mechanisms present in these 
pathways and genes causes various somatic alterations, in-
fluencing the diverse behaviors of tumors and responses to 
therapy.137 Within the context of tumor immunoediting, tu-
mor cells undergo constant mutational evolution and produce 
numerous TAAs. While most TAAs are detected, some evade 
recognition due to a lack of specific TCRs, allowing tumor 
immune escape, a process that advances tumor heterogene-
ity.100 The study of the TIME following TACE has shown that 
CD8 T cell clonal expansion was impeded after TACE. Addi-
tionally, clusters of CD8+ T cells in various functional states 
exhibit numerous shared TCR clonotypes, indicating the con-
tinuous evolution of CD8 cells coinciding with the release of 
neoantigens.73 In another study, researchers discovered that 
immune cells exhibit spatial heterogeneity, transitioning from 
normal tissue to the leading edge and into tumor regions 
via single-cell-scale time-of-flight mass cytometry. Further 
detailed analysis of the T-cell population determined that the 
leading edge region displays unique T-cell compositions, par-
ticularly enriched with double-positive T cells. Furthermore, 
findings derived from TCR trajectory analysis indicate that 
tumor-associated double-positive T cells may originate from 
single-positive T cells.138 Similarly, HCC with multifocal le-
sions and intrahepatic metastases also showed significant 
spatial heterogeneity in the TIME.139 Overall, the progres-
sion of cancer concerning immune regulation is considered 
a “hallmark of cancer,” and the TIME, characterized by its 
temporal and spatial diversity, partially elucidates the origins 
of tumor heterogeneity.

TCR-T therapy represents a promising tumor immuno-
therapy strategy and signifies an advancement in precision 
medicine. Nevertheless, some inevitable hurdles limit its ap-
plications. First, regarding “target antigen selection,” TCR-T 
cells can target both surface and intracellular antigens on 
tumor cells, allowing for a wider range of targets.116 Nota-
bly, only high-affinity neoantigens can induce phenotypic 
differentiation and infiltration of primed effector T cells.120 
Secondly, concerning “nonspecific cytotoxicity,” the current 
method of TCR-T delivery, which relies on whole-body cir-
culation, has shown unexpected toxicity attributed to the 
targeting of TAAs that are overexpressed in tumor cells but 
minimally expressed in healthy tissue, potentially causing 
autoimmune reactions. Focusing on neoantigens generated 
by mutations in tumor genes may enhance TCR-T therapy 
efficacy by minimizing nonspecific cytotoxic effects.119 More-
over, leveraging the vascular pathway through TACE and 

the precise delivery of designated TCR-T cells to the tumor 
site improves tumor control while minimizing side effects. 
Thirdly, the “inhibitory TME”, along with reduced chemokine 
expression and increased intercellular adhesion molecules, 
impedes T cell infiltration within the TME by influencing T 
cell migration and adhesion. Furthermore, the hypoxic TME 
increases immune checkpoint molecule expression, causing 
T cell exhaustion and impairing T cell functionality and cy-
tokine secretion capabilities.140 A recent study shows that 
IL-21 signaling boosted the anti-tumor efficacy of AFP-TCR-T 
by increasing TCR-T cell proliferation, promoting memory dif-
ferentiation, reducing PD-1 expression, and decreasing apo-
ptosis.141 Consequently, combined targeted systemic therapy 
may be a potential strategy to improve the efficacy of TCR-T 
therapy. Finally, the high cost of TCR-T therapy severely lim-
its its clinical application and promotion. Nevertheless, TCR-
T therapy remains a promising strategy for HCC treatment. 
Future research targeting the identification of highly specific 
target antigens, minimizing adverse effects, and exploring 
combination therapies to overcome drug resistance repre-
sents areas of interest and potential advancement.

Conclusions
The TCR repertoire provides a novel platform for investigat-
ing the modulation of the TME post-TACE and the underlying 
mechanisms governing tumor development and recurrence. 
Clarifying the distinctive metrics and dynamic alterations of 
the TCR repertoire within the context of combination thera-
py is imperative for understanding the mechanisms of anti-
tumor immunity, assessing efficacy, and further advancing 
precision oncology in the treatment of HCC.
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